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Rescaling invariance and anomalous transport in a stochastic layer
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The anomalous chaotic transport in a one-degree-of-freedom Hamiltonian system subjected to a small
time-periodic perturbation is investigated. Strong quasiperiodic dependencies of the statistical properties of the
motion on loge are found, wheres is a perturbation parameter. The period }ogepends on the rescaling
parametein, which is determined only by the frequency of perturbation and behavior of unperturbed Hamil-
tonian near a saddle point. The results confirm and generalize a recently established new universal rescaling
property of perturbed motion near a saddle pdiBtL063-651X99)51712-1

PACS numbses): 05.45.Ac, 05.60.Cd

Anomalous transport is one of the important features of x—xX'=\Y%, p—p’=~\Y2p. (1)
deterministic chaotic systemi&—4]. Particularly, anomalous
diffusion in Hamiltonian systems is of basic interest in manyThe rescaling parametar depends only on the perturbation
physical problems, for example, in mass transport and mixfrequency and the property of the unperturbed Hamiltonian
ing in hydrodynamic flow$5-8], transport of magnetic field near the hyperbolic fixed point. This is a generic property of
lines, heat and particles in fusion and space pladi®a41], a one-degree-of-freedom Hamiltonian system subjected to
etc. In one dimension it is characterized by a nonlinear timehe time-periodic perturbation, and as we shall demonstrate
dependence of a mean squared displacemgmix)?) that it will lead to important universal consequences in cha-
=2Dt?,(y#1), while for the normal diffusiony=1 andD otic transport in the system. Indeed, particles spend long time
determines a diffusion coefficient. intervals near the saddle points. There they slow down, and
Now it is well recognized that the anomaly of chaotic thus transport of particles along the stochastic layer is mainly
transport in deterministic Hamiltonian systems is due to theletermined by the structure of the stochastic layer near the
fact that a domain of chaotically unstable motion, known assaddle point. One can expect that similar structures of the
a stochastic layer, is not uniform and consists of subdomainstochastic layer near these regions will be reflected in the
of regular motions(so called Kolmogorov-Arnold-Mozer transport properties.
(KAM )-stability island$. The structure of the chaotic do- To be more specific, consider as a generic model the mo-
main, i.e., the mutual positions of KAM-stability islands and tion of a particle trapped by a main wave subjected to dis-
their sizes, are believed to determine the rate of anomalousirbances by two weak waves propagating in opposite direc-
transport processes. The transport analysis in such compldions. This system is described by the Hamiltonian
systems has been the subject of many investigations during
the last decadésee, e.g.[4,12-19). p
In this Rapid Communication we study an anomalous 7= %5 ~ 0GOS — €wg COIX— vt x) +cog X+ v+ x)],
chaotic transport in one-degree-of-freedom Hamiltonian sys- 2)
tem with hyperbolic fixed points subjected to time-periodic
perturbations. This system is generic and has many physicathere wq is the frequency of small oscillationg, and v
applicationg5-8,15-22. Any small strength of perturbation represent the amplitude and the frequency of the perturba-
destroys phase-space curves connecting saddle geaya- tion, respectively. The unperturbed systees=(Q) has ellip-
ratrices and separating domains of different types of mo-tic fixed points (at x=2#n,p=0) and hyperbolic fixed
tions, and chaotic motion appears near the unperturbed sepgeints[at x=2m(n+1/2),p=0].
ratrices. Recently the important rescaling property of Any small perturbation£+ 0) destroys the separatrix and
perturbed motion near the hyperbolic fixed points has beeforms a stochastic layer near the unperturbed separatrix. The
established if23-25. It has been found that the scaling structure of the stochastic layer changes with the perturba-
transformation(of the amplitudee and the phasg of the tion amplitudee and the phasg. However, the phase-space
time-periodic perturbation preserves the topology of the topologies of the stochastic layer near the hyperbolic saddle
phase-space of canonical variablesp) near the hyperbolic points (x,p) are similar when two different perturbation am-
fixed point. The equations of motion near the hyperbolicplitudes and phases are related throughx]— (\e,x
fixed point are invariant with respect to + ). The rescaling parametar is determined by the per-
turbation frequency and the behavior of the unperturbed
Hamiltonian near the hyperbolic fixed poifi23—-25. For
e—€' =\e, y—x' =x+m, system (2), A=exp(2rwy/v). This rescaling property is
shown in Fig. 1 by plotting Poincargections for the Hamil-
tonian system2) near the saddle point fofa) €,=0.02,
*Present address: InstitutrflPlasmaphysik, Forschungszentrum =0, and(b) e,=Ae,=0.08, y,= 7 at the valuex=4. The
Juich GmbH, D-52425 Jiich, Germany. mutual positions of islands of types 1, 2, and 3 are similar,
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obtained by direct numerical integration. Solid curve 1 corresponds

tot=10* T, and solid curve 2 ta=2x 10" To(To=27/v). The

corresponding dashed curves describe the results obtained by the

separatrix mag3).
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periodical change of the stochastic layer topology also leads
to periodical (or quasiperiodical changes in the transport

< characteristics.
. i L In order to study this effect we have considered a chaotic
03 04 05 06 0.7 transport of particles along th@nfinite) x axis of the stochas-
x/2n (mod 1) tic layer. The second moment?(t)=((x—(x))?) of the

) spatial displacement is first calculated by direct humerical

FIG. 1. Poincaresection of systen(2) near the hyperbolic fixed integration of the Hamiltonian systeii®), up to the time
point: () €,=0.02x,=0, and(b) e,=\e,=0.08x,=m. The res- instantt=2x10" T, for different perturbation parameters
caling parameter ia =4. €. HereTy=2m/v is the period of the perturbation. A set of

) o ] ] initial data ¢=0) consisting oN=5x 10 trajectories were
the coordinates of their fixed points are related according tQaken in a square region centered at the hyperbolic fixed
Eq. (1). Due to stlckmess in the chaotic region near thg IShoint (x=,p=0). Because of the fact that the perturbation
lands of type 1 particles may be trapped for a long timejn gq. (2) acts symmetrically on particles traveling in both
while near the island a)_r 3 partl(_:les may fly Io_ng distances (positive and negativedirections alongx axis, the mean
along positive(or negativé direction of thex axis. value ofx is expected to béx)=0.

For small perturbationg, the chaotic motion near the  gjnce the numerical integration of the Hamiltonian system
separatrix may be described by a shifted separatrix map. Thg rather time consuming, we have also used as a second
latter is a return map of timé) and energyH) to the same  55rG4ch the separatrix mé®) to calculates?(t). The latter
section of the phase—spa(@4,2§. Near the separatrix, the s aimost three orders of magnitude faster. It is also applied

corresponding map for the Hamiltonian syst€2) has the g gptain the probability density functiG®DF) P(x,t) for a

form particle with positionx at time instant.
_ - The dependence af?(t)=((x—(x))?) on the perturba-
her1=hg+eK +vT(hy)/4+ .
cr1= et eKsi et vT(h 4+ ], tion amplitudee is shown in Fig. 2 at two different time
Ors1=@rt V[T(h) +T(hes ) /4 3) instants: solid curve 1 correspondstte 10 T, and solid

curve 2 tot=2x10* T,. The perturbation frequency is cho-
where<p=vt,h=(H—wS)/wS, K=4mA?%/sinh@@A2), A sen asv=4.5323@,. Then the rescaling parameter As

=wy/v, and T(h)=2m/w(h) is a period of unperturbed =4. The variancer?(t) was also calculated using the sepa-

motion, andw(h) is its frequency. Near the separatrix, the ratrix map (3) [with an average oveN=10" orbits]. The
universal asymptotics dashed curves in Fig. 2 correspond to the latter calculations.
The map(3) correctly reproduces the results of direct nu-
merical integrations, with a good accuracy up to the value
+f(h), for h—=0, (4) e=0.1.

Figure 2 clearly shows the strong quasi-periodical depen-
appears, where the correction tefifh) is of orderh. Such  dence of the second moment(t) on the perturbation pa-
asymptoticg4) leads to a chaotic motion near the separatrix,;/ametere. There are local maxima of?(t) at the values
which occurs for any small perturbation amplitudelue to €. =\ Temay, €max=0.192, and local minima at!)),

overlapping of infinite number of resonances of type=\'eqin,€min=0.08, (=1,2,...). Forlarge perturbation

Th_l|32
()—w—onm

mw(h)=nv, (M=mg, ... ,©;n is an integer numbgf16]. amplitudese>0.1 the quasi-periodical behavior of(t) is

The smallest numben, is determined bye. less pronounced since the rescaling property of Hamiltonian
In the limit |h|—0, the separatrix mag3) is invariant  system starts to violate for large perturbations.

with respect to the transformatigf) with the rescaling pa- The behavior of the second momert(t) for long times

rameter\ = exp(2rwy/v). It means that the topology of the t>2x 10* was studied using the separatrix @ Figure 3
stochastic layer is periodically repeating when changing thehows o(t) versuse at the different time instants/T,
perturbation parametey, i.e., it is a periodic function of le  =10%2x10* 5x10% 10°,1C°, continuously numbered 1 to
with the period Il\=27wy/v. It can be expected that the 5, respectively. With increasing time, the periodic depen-
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FIG. 3. Same as in Fig. 2, but for the time instarts:10* T, a .t r’ \ f ] }\
(1), 2x10* T, (2), 5X10* Ty (3), 10° Ty (4), 10° T, (5). A

dence ofa?(t) on e becomes more pronounced.
The profiles near the maxima become sharper, with shal- 2

low regions between them. The positions of the maxi¥a,

move towards smallee, but the positions of the minima g 5. Fitting parametera and 3 for a power-exponential law

€}, become less distinct. The sharp maxima are due to the(x,t)~|x|~* exp(~ 8X)): (@ a vs €; (b) B Vs e. A time instant

crossing the critical perturbation amplitudﬁn) for destruc- t=2x10* T,.

tion of the last KAM-invariant curve between the stochastic

layer and them:n resonance of type (islands of type 1 in

Fig. D, i.e.,mw(hy,)=nv,(h,,<0), with the smallest pos-

sible numberm. Just before crossing the invariant CUrve,, — 5 10 T, for perturbation parameters in the interval

more orbits are trapped by islands of type 2 and 3. Th e :
reason is that the corresponding critical perturbation amplis-to'ooz’ 0.1 The number of orbits if=10°. The PDF is

. Imost symmetric with respect to=0, and it is mostly lo-
tude ') for these resonancdsnw(h,.)=nwv,h,>0], is >N 4 e pec ’ Sty
smalleen;nthan for the resonari{ce a;(f tr;np)e 1 ViénT§<E](,) calized near this point. The widthA2r of P(x,t) defined as
' m mn an area— Ao<x<Ao, where a half of orbits is localized,

This asymmetry Is dye to the correction tef(h) in Eg. (4)' ie., é‘g P(x,t)dx=0.5, has also a strong periodical depen-
It results in enhancing the transport rate along xhaxis. o T 2
dence on lia similar to o“(t).

. s (7) .
After crossing the criticalep,;, the resonancem:n(hyy, The main feature oP(x,t) is its long tail asymptotics for

<0) joins to the stochastic .Iayer, and orbits start to b >Q>Ao. The latter significantly depends on the perturbation
trapped by that resonance. This leads to the decreasing of t . :
parametefe. The comparison, for instance, of the two PDF

transport rate. The small amplitude oscillationsr#{(t) with at e=0.048 ande=0.08 for which the second momentst)

re;spect toe are due to the jo.ining ofn:q resonances With have maximum and minimum values, respectively, shows
h|ghe|r ntuhmbers?. The Ifongt.tm?e e\:OIEth).n more l_p;ri%;ely that while the PDF fore=0.048 has a slowly decaying tail,
reveais the existence of critical perturbation amplitu the PDF fore=0.08 decays much faster. We have approxi-

f%r dt(_astlruction 3ftkl1<AM-invariant curves between the Sto'matedP(x,t) asymptotically by power exponentia®(x,t)
chastic layer and thm.n resonance. ~|x|~ e~ A law. The fitting exponenta and 3 at the time

For .Iarge timed the asyn”_nptoFics_ iSrz(t).~t7. The_ EXPO-instantt=2x 10* T, are presented in Fig. 538 showsa
nenty is also a strong quasiperiodic function ofdwith the versuse, while (b) showsj versuse. First of all, a strong

period In\. The dependence on e obtained using the sepa- NORTT
. . g . quasiperiodic dependence of these parameters osn dpg
[ﬁtnx m"?“’@ IS shc;v'\;? n F'g';"lﬂ;e chl?ot|cttrag]iport along pears with the period logsimilar to that for the exponent
e x axis is superdiffusive y>1) for all perturbation am- in the time—asymptotics af2(t).

plitudes. The exponent takes maximum and minimum val- There are regions of at the minima ofo%(t) where the

> : .
ues at the same values asr*(t) ploes. 'I_'he regions witly parametet 8| is relatively small, and the tail of PDF is more
=2 correspond to the acceleration regimes. closely described by the powerlike lgw| ~“. At the grow-
ing phases of the quasiperiodical dependence?§t) on e
the parameter8 may take even negative values, which
means that tail of PDF decays even slower than the power-
like law |x| ~“ (see Fig. 2 On the other hand, the exponen-
tial decreasee™#X of P(x,t) prevails in the regions o&
where g?(t) is decreasing. The exponential decrease of the
probability to find particles at large is due to trapping of
particles by them:n resonance with the smallest possible
numberm (the island of type 1 in Fig.)l(whene crosses the
FIG. 4. Exponenty vs perturbation amplitude. It is obtained  critical valueel,) for destruction of the last KAM-invariant
by fitting ?(t) with 2Dt in the large time interval 10 T<t curve between the stochastic layer and i@ resonance
<10° T,. On the other hand, foe<e' ) particles are trapped by

mn

The separatrix mag3) is also applied to calculate PDF
P(x,t). The PDFP(x,t) was calculated at the time instant

25
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resonances of type 2 and 3, and therefore they can travel lorig models of physical systems which are described by a sto-
distancex. In this case, the tail dP(x,t) decays slower than chastic web(see, e.g.[4]).
|x|~«. Overall the results show that the asymptotics of PDF It also suggests that the chaotic transport does not mono-
P(x,t) for [x|> Ao significantly depends the structure of the tonically increase with the perturbation amplitude, as it is
stochastic layer, and it is mainly determined by the outeroften assumed in qualitative transport. The established effect
most KAM-stability islands at the chaos border. shows the possible range of controlling Hamiltonian chaos
In conclusion, we have established a strong quasiperiodf27], in particularly, the chaotic transport by varying the per-
cal dependence of transport properties on the perturbatiofrpation amplitude. It may be useful to control a transport of
parameter. This effect is universal for one-degree-of-freedomeat and particles in magnetic fusion devices with stochastic
Hamiltonian system subjected to small time-periodic pert“r'magnetic field lineg28], a transport of passive scalars in a

bation regardless on the specific features of the system. Ong\ain of vorticeg8], or a mixing of fluids[22]
can expect the effect occurs, for instance, in chaotic mass ’ '

transport in a chain of vortices in a shear lay8}, planar S.A gratefully acknowledges generous support and valu-
periodic vortical flowg21]. Similar it may be also observed able comments of Professor G. Eilenberger.
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