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Rescaling invariance and anomalous transport in a stochastic layer
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The anomalous chaotic transport in a one-degree-of-freedom Hamiltonian system subjected to a small
time-periodic perturbation is investigated. Strong quasiperiodic dependencies of the statistical properties of the
motion on loge are found, wheree is a perturbation parameter. The period logl depends on the rescaling
parameterl, which is determined only by the frequency of perturbation and behavior of unperturbed Hamil-
tonian near a saddle point. The results confirm and generalize a recently established new universal rescaling
property of perturbed motion near a saddle point.@S1063-651X~99!51712-1#

PACS number~s!: 05.45.Ac, 05.60.Cd
o

ny
ix

m

tic
th
a

ai
r
-
d

lo
p
ri

u
y
ic
ic

o
e
o

ee
g

e

li

n
ian
of
to

rate
ha-
ime
and
inly
the
the
the

mo-
is-

rec-

rba-

d
The

rba-
e
dle
-

-
d

lar,
m

Anomalous transport is one of the important features
deterministic chaotic systems@1–4#. Particularly, anomalous
diffusion in Hamiltonian systems is of basic interest in ma
physical problems, for example, in mass transport and m
ing in hydrodynamic flows@5–8#, transport of magnetic field
lines, heat and particles in fusion and space plasmas@9–11#,
etc. In one dimension it is characterized by a nonlinear ti
dependence of a mean squared displacement^(Dx)2&
52Dtg,(gÞ1), while for the normal diffusiong51 andD
determines a diffusion coefficient.

Now it is well recognized that the anomaly of chao
transport in deterministic Hamiltonian systems is due to
fact that a domain of chaotically unstable motion, known
a stochastic layer, is not uniform and consists of subdom
of regular motions~so called Kolmogorov-Arnold-Moze
~KAM !-stability islands!. The structure of the chaotic do
main, i.e., the mutual positions of KAM-stability islands an
their sizes, are believed to determine the rate of anoma
transport processes. The transport analysis in such com
systems has been the subject of many investigations du
the last decade~see, e.g.,@4,12–14#!.

In this Rapid Communication we study an anomalo
chaotic transport in one-degree-of-freedom Hamiltonian s
tem with hyperbolic fixed points subjected to time-period
perturbations. This system is generic and has many phys
applications@5–8,15–22#. Any small strength of perturbation
destroys phase-space curves connecting saddle points~sepa-
ratrices! and separating domains of different types of m
tions, and chaotic motion appears near the unperturbed s
ratrices. Recently the important rescaling property
perturbed motion near the hyperbolic fixed points has b
established in@23–25#. It has been found that the scalin
transformation~of the amplitudee and the phasex of the
time-periodic perturbation! preserves the topology of th
phase-space of canonical variables (x,p) near the hyperbolic
fixed point. The equations of motion near the hyperbo
fixed point are invariant with respect to

e→e85le, x→x85x1p,
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x→x8'l1/2x, p→p8'l1/2p. ~1!

The rescaling parameterl depends only on the perturbatio
frequency and the property of the unperturbed Hamilton
near the hyperbolic fixed point. This is a generic property
a one-degree-of-freedom Hamiltonian system subjected
the time-periodic perturbation, and as we shall demonst
that it will lead to important universal consequences in c
otic transport in the system. Indeed, particles spend long t
intervals near the saddle points. There they slow down,
thus transport of particles along the stochastic layer is ma
determined by the structure of the stochastic layer near
saddle point. One can expect that similar structures of
stochastic layer near these regions will be reflected in
transport properties.

To be more specific, consider as a generic model the
tion of a particle trapped by a main wave subjected to d
turbances by two weak waves propagating in opposite di
tions. This system is described by the Hamiltonian

H5
p2

2
2v0

2cosx2ev0
2@cos~x2nt1x!1cos~x1nt1x!#,

~2!

where v0 is the frequency of small oscillations;e and n
represent the amplitude and the frequency of the pertu
tion, respectively. The unperturbed system (e50) has ellip-
tic fixed points ~at x52pn,p50) and hyperbolic fixed
points @at x52p(n11/2),p50#.

Any small perturbation (eÞ0) destroys the separatrix an
forms a stochastic layer near the unperturbed separatrix.
structure of the stochastic layer changes with the pertu
tion amplitudee and the phasex. However, the phase-spac
topologies of the stochastic layer near the hyperbolic sad
points (x,p) are similar when two different perturbation am
plitudes and phases are related through (e,x)→(le,x
1p). The rescaling parameterl is determined by the per
turbation frequencyn and the behavior of the unperturbe
Hamiltonian near the hyperbolic fixed point@23–25#. For
system ~2!, l5exp(2pv0 /n). This rescaling property is
shown in Fig. 1 by plotting Poincare´ sections for the Hamil-
tonian system~2! near the saddle point for:~a! ea50.02,xa
50, and~b! eb5lea50.08, xb5p at the valuel54. The
mutual positions of islands of types 1, 2, and 3 are simi
R6287 © 1999 The American Physical Society
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the coordinates of their fixed points are related according
Eq. ~1!. Due to stickiness in the chaotic region near the
lands of type 1 particles may be trapped for a long ti
while near the island 2~or 3! particles may fly long distance
along positive~or negative! direction of thex axis.

For small perturbationse, the chaotic motion near th
separatrix may be described by a shifted separatrix map.
latter is a return map of time~t! and energy~H! to the same
section of the phase–space@24,26#. Near the separatrix, th
corresponding map for the Hamiltonian system~2! has the
form

hk115hk1eKsin@wk1nT~hk!/41x#,

wk115wk1n@T~hk!1T~hk11!#/4, ~3!

wherew5nt,h5(H2v0
2)/v0

2, K54pL2/sinh(pL/2), L
5v0 /n, and T(h)52p/v(h) is a period of unperturbed
motion, andv(h) is its frequency. Near the separatrix, th
universal asymptotics

T~h!5
1

v0
ln

32

uhu
1 f ~h!, for h→60, ~4!

appears, where the correction termf (h) is of orderh. Such
asymptotics~4! leads to a chaotic motion near the separat
which occurs for any small perturbation amplitudee due to
overlapping of infinite number of resonances of ty
mv(h)5nn, (m5m0 , . . . ,̀ ;n is an integer number! @16#.
The smallest numberm0 is determined bye.

In the limit uhu→0, the separatrix map~3! is invariant
with respect to the transformation~1! with the rescaling pa-
rameterl5exp(2pv0 /n). It means that the topology of th
stochastic layer is periodically repeating when changing
perturbation parametere, i.e., it is a periodic function of lne
with the period lnl52pv0 /n. It can be expected that th

FIG. 1. Poincare´ section of system~2! near the hyperbolic fixed
point: ~a! ea50.02,xa50, and~b! eb5lea50.08,xb5p. The res-
caling parameter isl54.
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periodical change of the stochastic layer topology also le
to periodical ~or quasiperiodical! changes in the transpor
characteristics.

In order to study this effect we have considered a cha
transport of particles along the~infinite! x axis of the stochas-
tic layer. The second moments2(t)5^(x2^x&)2& of the
spatial displacement is first calculated by direct numeri
integration of the Hamiltonian system~2!, up to the time
instant t523104 T0 for different perturbation parameter
e. HereT052p/n is the period of the perturbation. A set o
initial data (t50) consisting ofN553103 trajectories were
taken in a square region centered at the hyperbolic fi
point (x5p,p50). Because of the fact that the perturbati
in Eq. ~2! acts symmetrically on particles traveling in bo
~positive and negative! directions alongx axis, the mean
value ofx is expected to bêx&50.

Since the numerical integration of the Hamiltonian syst
is rather time consuming, we have also used as a sec
approach the separatrix map~3! to calculates2(t). The latter
is almost three orders of magnitude faster. It is also app
to obtain the probability density function~PDF! P(x,t) for a
particle with positionx at time instantt.

The dependence ofs2(t)5^(x2^x&)2& on the perturba-
tion amplitudee is shown in Fig. 2 at two different time
instants: solid curve 1 corresponds tot5104 T0 and solid
curve 2 tot523104 T0. The perturbation frequency is cho
sen asn54.53236v0. Then the rescaling parameter isl
54. The variances2(t) was also calculated using the sep
ratrix map ~3! @with an average overN5104 orbits#. The
dashed curves in Fig. 2 correspond to the latter calculatio
The map~3! correctly reproduces the results of direct n
merical integrations, with a good accuracy up to the va
e50.1.

Figure 2 clearly shows the strong quasi-periodical dep
dence of the second moments2(t) on the perturbation pa
rametere. There are local maxima ofs2(t) at the values
emax

( j ) 5l2 jemax, emax'0.192, and local minima atemin
( j )

5l2 jemin ,emin'0.08, (j 51,2, . . . ). Forlarge perturbation
amplitudese.0.1 the quasi-periodical behavior ofs2(t) is
less pronounced since the rescaling property of Hamilton
system starts to violate for large perturbations.

The behavior of the second moments2(t) for long times
t.23104 was studied using the separatrix map~3!. Figure 3
shows s2(t) versus e at the different time instantst/T0
5104,23104,53104,105,106, continuously numbered 1 to
5, respectively. With increasing time, the periodic depe

FIG. 2. Second moments2(t) vs perturbation amplitudee as
obtained by direct numerical integration. Solid curve 1 correspo
to t5104 T0 and solid curve 2 tot523104 T0(T052p/n). The
corresponding dashed curves describe the results obtained b
separatrix map~3!.
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dence ofs2(t) on e becomes more pronounced.
The profiles near the maxima become sharper, with s

low regions between them. The positions of the maximaemax
( j )

move towards smallere, but the positions of the minima
emin

( j ) become less distinct. The sharp maxima are due to
crossing the critical perturbation amplitudeemn

(2) for destruc-
tion of the last KAM-invariant curve between the stochas
layer and them:n resonance of type 1~islands of type 1 in
Fig. 1!, i.e.,mv(hmn)5nn,(hmn,0), with the smallest pos
sible numberm. Just before crossing the invariant curv
more orbits are trapped by islands of type 2 and 3. T
reason is that the corresponding critical perturbation am
tude emn

(1) for these resonances@mv(hmn)5nn,hmn.0#, is
smaller than for the resonance of type 1, i.e.,emn

(1),emn
(2) .

This asymmetry is due to the correction termf (h) in Eq. ~4!.
It results in enhancing the transport rate along thex axis.
After crossing the criticalemn

(2) , the resonancem:n(hmn

,0) joins to the stochastic layer, and orbits start to
trapped by that resonance. This leads to the decreasing o
transport rate. The small amplitude oscillations ins2(t) with
respect toe are due to the joining ofm:n resonances with
higher numbersm. The long time evolution more precisel
reveals the existence of critical perturbation amplitudesemn

(6)

for destruction of KAM-invariant curves between the st
chastic layer and them:n resonance.

For large timest the asymptotics iss2(t);tg. The expo-
nentg is also a strong quasiperiodic function of lne with the
period lnl. The dependenceg on e obtained using the sepa
ratrix map~3! is shown in Fig. 4. The chaotic transport alon
the x axis is superdiffusive (g.1) for all perturbation am-
plitudes. The exponentg takes maximum and minimum va
ues at the samee values ass2(t) does. The regions withg
.2 correspond to the acceleration regimes.

FIG. 3. Same as in Fig. 2, but for the time instants:t5104 T0

~1!, 23104 T0 ~2!, 53104 T0 ~3!, 105 T0 ~4!, 106 T0 ~5!.

FIG. 4. Exponentg vs perturbation amplitudee. It is obtained
by fitting s2(t) with 2Dtg in the large time interval 104 T0<t
<105 T0.
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The separatrix map~3! is also applied to calculate PD
P(x,t). The PDFP(x,t) was calculated at the time instan
t523104 T0 for perturbation parameterse in the interval
@0.002, 0.1#. The number of orbits isN5105. The PDF is
almost symmetric with respect tox50, and it is mostly lo-
calized near this point. The width 2Ds of P(x,t) defined as
an area2Ds,x,Ds, where a half of orbits is localized
i.e., *2Ds

Ds P(x,t)dx50.5, has also a strong periodical depe
dence on lne similar to s2(t).

The main feature ofP(x,t) is its long tail asymptotics for
uxu@Ds. The latter significantly depends on the perturbati
parametere. The comparison, for instance, of the two PD
at e50.048 ande50.08 for which the second momentss(t)
have maximum and minimum values, respectively, sho
that while the PDF fore50.048 has a slowly decaying tai
the PDF fore50.08 decays much faster. We have appro
matedP(x,t) asymptotically by power exponential,P(x,t)
;uxu2ae2buxu, law. The fitting exponentsa andb at the time
instant t523104 T0 are presented in Fig. 5:~a! showsa
versuse, while ~b! showsb versuse. First of all, a strong
quasiperiodic dependence of these parameters on loge ap-
pears with the period logl similar to that for the exponentg
in the time–asymptotics ofs2(t).

There are regions ofe at the minima ofs2(t) where the
parameterubu is relatively small, and the tail of PDF is mor
closely described by the powerlike lawuxu2a. At the grow-
ing phases of the quasiperiodical dependence ofs2(t) on e
the parameterb may take even negative values, whic
means that tail of PDF decays even slower than the pow
like law uxu2a ~see Fig. 2!. On the other hand, the expone
tial decreasee2buxu of P(x,t) prevails in the regions ofe
wheres2(t) is decreasing. The exponential decrease of
probability to find particles at largex is due to trapping of
particles by them:n resonance with the smallest possib
numberm ~the island of type 1 in Fig. 1! ~whene crosses the
critical valueemn

(2) for destruction of the last KAM-invarian
curve between the stochastic layer and them:n resonance!.
On the other hand, fore,emn

(2) , particles are trapped by

FIG. 5. Fitting parametersa andb for a power-exponential law
P(x,t);uxu2a exp(2buxu): ~a! a vs e; ~b! b vs e. A time instant
t523104 T0.
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resonances of type 2 and 3, and therefore they can travel
distancesx. In this case, the tail ofP(x,t) decays slower than
uxu2a. Overall the results show that the asymptotics of P
P(x,t) for uxu@Ds significantly depends the structure of th
stochastic layer, and it is mainly determined by the out
most KAM-stability islands at the chaos border.

In conclusion, we have established a strong quasiperi
cal dependence of transport properties on the perturba
parameter. This effect is universal for one-degree-of-freed
Hamiltonian system subjected to small time-periodic pert
bation regardless on the specific features of the system.
can expect the effect occurs, for instance, in chaotic m
transport in a chain of vortices in a shear layer@8#, planar
periodic vortical flows@21#. Similar it may be also observe
.
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in models of physical systems which are described by a
chastic web~see, e.g.,@4#!.

It also suggests that the chaotic transport does not mo
tonically increase with the perturbation amplitude, as it
often assumed in qualitative transport. The established ef
shows the possible range of controlling Hamiltonian cha
@27#, in particularly, the chaotic transport by varying the pe
turbation amplitude. It may be useful to control a transport
heat and particles in magnetic fusion devices with stocha
magnetic field lines@28#, a transport of passive scalars in
chain of vortices@8#, or a mixing of fluids@22#.
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